Fall 2018 Course List
Updated September 6, 2018

Robotics Core:

- ROB 501: Math for Robotics (Grizzle)
- ROB 550: Robotics Systems Lab (Revzen & Gaskell)

Sensing:

- AEROSP 566: Data Analysis & System Identification (Bernstein)
- EECS 442: Computer Vision (Corso)
- EECS 542: Advanced Topics in Computer Vision (Deng)
- EECS 551: Matrix Methods for Signal Processing (Fessler)
- ROB 535 / MECHENG 599 / NAVARCH 565 / EECS 498: Self Driving Cars: Perception and Control (Johnson-Roberson & Vasudevan)

Reasoning:

- AEROSP 584: Navigation & Guidance of Aerospace Vehicles (Panagou)
- EECS 545: Machine Learning (Clayton)
- EECS 550: Information Theory (Pradhan)
- EECS 563: Hybrid Systems: Specification, Verification, and Control (Ozay)
- EECS 592: Foundations of Artificial Intelligence (Laird)
- EECS 595: Natural Language Processing (Mihalcea)
- EECS 598: Computational Modeling in Human-Computer Interaction (Banovic)
- EECS 598: Computational Data Science (Nadakuditi)
- EECS 598: Reinforcement Learning (Baveja)
• IOE 536: Cognitive Ergonomics (Sarter)
• IOE 611: Nonlinear Programming (Epelman)

Acting:

• AEROSP 540 / MECHENG 540: Intermediate Dynamics (Orosz)
• AEROSP 740: Applied Nonlinear Control (Girard)
• EECS 461: Embedded Systems Control (Freudenberg)
• EECS 563: Hybrid Systems: Specification, Verification, and Control (Ozay)
• EECS 566: Discrete Event Systems (Lafortune)
• MECHENG 461: Automatic Control (Rouse)
• ROB 510 / EECS 567 / MECHENG 567: Robot Kinematics and Dynamics (EECS 398 for Undergrad ONLY) (Jenkins)
• ROB 535 / MECHENG 599 / NAVARCH 565 / EECS 498: Self Driving Cars: Perception and Control (Johnson-Roberson & Vasudevan)

Elective:

• EECS 498: Intro to Algorithmic Robotics (Berenson)
• EECS 501: Probability & Random Processes (Sadanandaraao/Teneketzis)
• EECS 560 / MECHENG 564 / AEROSP 550: Linear Systems Theory (Gillespie)
• EECS 598: Topics in Hardware Security (Genkin)
• ISD 599F: Vehicle Crashworthiness and Occupant Protection (Hu)
• ME 552: Mechatronic Systems Design (Awtar)
• KIN 431: Clinical Gait Analysis (Gates)
• MOVESCI 510: Musculoskeletal Simulation and Optimal Control (Umberger)