A New Framework to Guide the Processing of RGBD Video

Dr. Jason Corso and Dr. Brent Griffin are extending prior work in bottom-up video segmentation to include depth information from RGBD video, which allows us to better train for specific tasks and adaptively update representations of objects in complex environments. For robotics applications, we are incorporating this into a framework that guides the processing of RGBD video using a kinematic description of a robot’s actions, thereby increasing the quality of observations while reducing the overall computational costs. Using kinematically-guided RGBD video, we are able to provide feedback to a robot in real-time to: identify task failure, detect external objects or agents moving into a workspace, and develop a better understanding of objects while interacting them.

Chad Jenkins named Editor-in-Chief of the ACM Transactions on Human-Robot Interaction (THRI)

We are thrilled to become part of the ACM family of journals,” explained THRI Co-Editor-in-Chief Odest Chadwicke Jenkins of the University of Michigan. “ACM’s reputation as a publisher of computing research is unparalleled. At the same time, the broad representation of computing disciplines in the ACM, the organization’s global reach, and platforms such as the Digital Library, are a perfect complement to our own goals for THRI.

Jenkins, along with Co-Editor-in-Chief Selma Šabanović of Indiana University, have set three primary goals for the journal in the coming years, including: 1) Sustaining the intellectual growth of HRI as a field of study (both quantitatively and qualitatively), 2) Enabling timely and productive feedback from readers, and 3) Cultivating new and leading-edge ideas in both robotics and the human-centered sciences

The inaugural issue of the rebranded ACM Transactions on Human-Robot Interaction (THRI) is planned for March 2018. Those seeking to submit for the publication, or who have questions for the editors, are encouraged to visit the current HRI Journal website.

The full article.

Robots beware: we will detect your anomalies!


Professor Necmiye Ozay has been awarded the NASA Early CAREER Faculty award, which enables Professor Ozay and her team to develop “Run-time anomaly detection and mitigation in information-rich cyber-physical systems.” The crowning application will be an exploration problem involving humans and robots.

More information here.