An ultra-precise mind-controlled prosthetic

March 9, 2020

In a major advance in mind-controlled prosthetics for amputees, University of Michigan researchers have tapped faint, latent signals from arm nerves and amplified them to enable real-time, intuitive, finger-level control of a robotic hand.

To achieve this, the researchers developed a way to tame temperamental nerve endings, separate thick nerve bundles into smaller fibers that enable more precise control, and amplify the signals coming through those nerves. The approach involves tiny muscle grafts and machine learning algorithms borrowed from the brain-machine interface field. 

Continue reading ⇒

How can pedestrians trust autonomous vehicles

January 23, 2020

When at a crosswalk, humans can easily read a driver’s slightest nod. These gestures give us the confidence to step out into the road full of two-ton machines. With an automated vehicle, however, that human to human communication is unreliable: the driver may not be in control or even be paying attention, leaving the pedestrian unsure if they’ll be safe while crossing. 

To inform future solutions to this, a team led by Michigan researchers observed how we act as pedestrians in a virtual reality city full of autonomous vehicles.

“Pedestrians are the most vulnerable road users,” said Suresh Kumaar Jayaraman, a PhD student in mechanical engineering. “If we want wide-scale adoption of autonomous vehicles, we need those who are inside and outside of the vehicles to be able to trust and be comfortable with a vehicle’s actions.” 

Continue reading ⇒

What humans want, in an automated vehicle

November 8, 2019
Professors Lionel Robert and X. Jessie Yang stand in front of an autonomous vehicle at Mcity, an autonomous vehicle testing ground. Photo: Jeffrey M. Smith/School of Information.

Agreeable, conscientious, and stable. These are three human personality traits that, it turns out, we want to see in our driverless cars regardless of whether we possess them ourselves, according to a new study from the University of Michigan.

The researchers set out to examine how a person’s perception of safety in an autonomous vehicle was influenced by the degree to which the vehicle and the rider seemed to share certain “personality” traits.

Continue reading ⇒

Humans and robots: the emotional connection

July 22, 2019
Robot plays soccer
YiBin Jiang, Medical School Research Technician, plays soccer with a robot. Photo: Joseph Xu.

Soldiers develop attachments to the robots that help them diffuse bombs in the field. Despite numerous warnings about privacy, millions of us trust smart speakers like Alexa to listen into our daily lives. Some of us name our cars and even shed tears when we trade them in for shiny new vehicles.

Research has shown that individually we develop emotional, trusting relationships with robotic technology, but until now little has been known about whether groups that work with robots develop attachments, and if so, if such emotions affect team performance. 

Continue reading ⇒

Building trust between driverless car and driver

March 14, 2019
an obstacle in the road during a driving simulator
An upcoming obstacle sits in the road during a driving simulation that explores how drivers trust autonomous driving systems. Courtesy Lionel Robert.

If a driver does not trust an autonomous driving system, letting the computer take control can be as daunting as letting a teenager take the wheel. While not trusting a new driver might cause passengers to slam a phantom brake pedal or white-knuckle an arm rest, a driver who does not trust driverless systems might miss out on important safety benefits or even, as autonomous system advance, the ability to complete other tasks.

To improve trust in autonomous systems, researchers at the University of Michigan conducted virtual driving trials that found that the more information an automated driving system communicated about upcoming situations, the higher the level of trust a driver had in the system, and the better the driver performed on a task other than driving.

Continue reading ⇒